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Abstract

This is the third in a series of papers on aspects of modern com-
puting environments that are relevant to statistical data analysis. In
this paper, we discuss programming environments. In particular, we
argue that integrated programming environments (for example, Lisp
and Smalltalk environments) are more appropriate as a base for data
analysis than conventional operating systems (for example Unix).
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1 Introduction

1.1 Requirements of Data Analysis

How we think about data analysis is strongly influenced by the computing
environment in which the analysis is done.

At present, most actual data analysis is done with statistical packages
that were designed for the batch-processing environments of 20 years ago.
Moreover, nearly all research in new statistical methods tacitly assumes the
limitations imposed by batch processing and statistical packages.

The need of data analysis that is most poorly served by statistical pack-
ages is the ability to imnprovize an analysis on the spot. Analyzing data often
proceeds as a series of solutions to small, easy problems, each of which gives
more information about the data and suggests new directions to explore.
In the process unexpected things nearly always happen. The practice of
data analysis is as much figuring out what question to ask as figuring out
how to answer it.

Typical analyses repeat cycles like the following:

e Perform some operation on a data set (i.e. run a program).

For example, suppose we need a smooth approximation, p(x), to the
age distribution of a population. A first choice for pQ(x) might be
something simple, like the fraction of the population within some
interval about x.

e Examine the results.

For this example, we could compare a plot of the curve of p(x) with
a histogram of the observed age distribution. I L

* Choose the next action based on the results.

After looking at the plot, we may decide to use a p() that is more
complex and idiosyncratic, such as one that treats multiples of 5 and
10 differently from other values of x.

2(



We have acquired this view of data analysis as fundamentally improviza-
tional from the work of John Tukey[27,391 and-in the context of computing
systems-more immediately from the S system of Becker and Chambers [4,5,6].
From our point of view, the most important contribution of S is the real-
ization that the unpredictable nature of good data analysis demands an
interactive programming language rather than the fixed set of canned sta-
tistical procedures provided by the statistical packages. Many other statis-
tical systems incorporate degrees of programmability, but (as far as we are
aware) S goes the farthest in considering itself a programming environment
first and only secondarily a collection of statistical primitives.

1.2 Choices for the future

S was developed in the late 70's; it was intended to be used on multi-user
minicomputers like PDP ll's and Vaxes running the Unix operating sys-
tem, with a pen-plotter or graphics terminal for viewing plots. In previous
papers, we have argued that, in the mid 80's, a single-user graphics work-
station is the appropriate hardware for new data analysis systems [25,261.
The topic of this paper is software-what style of programming environ-
ment is the best choice as a base for research in future systems like S.
The basic alternatives are a conventional operating system or an integrated
programming environment.

Examples of conventional operating systems are Unix, DEC's VMS,
DEC's TOPS-20, and IBM's VM/CMS. They are distinguished by an em-
phasis on support for diverse languages in a multi-user environment. Dozens
of companies sell workstations with conventional operating systems. They
treat a workstation as simply a minicomputer with a display added-that
happens to be used by a single person. The operating systems used on these
workstations are inherited with little change from the multi-user computers
of the 1970's.

The existing integrated programming environments include: Smalltalk
[17,19,18,241, InterLisp-D [33,37,401, and Loops [8,35], all originally devel-
oped at Xerox PARC, and available on workstations from Xerox and Tek-
tronix, and several similar CommonLisp-based environments, available on
workstations from LMI, Symbolics, and Texas Instruments, that had their
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origins in the Lisp machine project at MIT [2]. Altogether, integrated pro-
gramming environments are found on 10-20 models of workstation fromi
about a half dozen manufacturers.

An explanation why there are so many more workstations with con-
ventional operating systems is that the integrated programming environ-
ments are a greater departure from the past. The integrated environ-
ments are designed to take advantage of the potential of a single-user com-
puter with a high-resolution display to encourage an experimental style of
programming[32].

The discussion in this paper will no doubt be influenced by our experi-
ence, which is primarily with with Unix and Lisp environments, including
several years as systems programmers on machines running various versions
of Unix and about two years working with the Xerox interLisp-D environ-
ment (Pedersen) and the Symbolics Lisp Machine environment (McDonald).

When we began working with Lisp machines in 1984, these proces-
sors were typically implemented in discrete (bit-slice) components [25] and,
largely as a result, were 2-3 times as expensive as equally powerful worksta-
tions with more conventional architectures, for which VLSI microprocessor

implementations were available (e.g. Motorola 68000). However, by May
1986, the prices of Lisp machines have dropped to be perhaps 25-50% higher
than equivalent 68020-based machines. VLSI implementations of Lisp pro-
cessors should appear within the next year or two, at which point there
should be no significant difference in price.

The remaining sections in this paper will assume that our readers are
familiar with some time-sharing, multi-user operating system, to the ex-
tent of having written and run small programs (hundreds of lines) in a
language like C. The arguments we make will be more meaningful to read-
ers who have written and debugged programs that required linking-that
used procedures stored in separately compiled files. It will also be helpful
if the readers have used an interactive subsystem based on an interpreted
language-like S, Minitab, Macsyma. APL. or Lisp.
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2 Programming environments

The programming environment is usually taken to mean a set of tools for
writing, storing, managing, compiling, debugging, analyzing, and running
programs written in a language like C or Pascal and a set of parts (e.g.
subroutine libraries) for building new programs. However, we will use the
term "programming" here in a broader sense; we consider any act that
modifies the state or behavior of the machine to be a form of programming
and we will take an equally broad sense of the meaning of "programming
environment".

In this context, the most important thing the programming environment
does is to give the user a way to think about what is going on in the
machine-a mental model. At the lowest level, the machine is a structure
built of pieces of metal and silicon, carrying varying voltages and currents.
To do anything useful, we need to think and act in terms of some higher
level abstractions.

A model can often be described in terms of a set of abstract objects and
actions that can be done to objects [151. In the various models provided
by most environments, typical objects are integers, arrays, files, processes,
display devices, and so forth. An action might be addition of integers,
compiling a file, interrupting a process, drawing a picture on a display.

Each model is usually associated with a langu~age. The language is a
formal way of expressing ideas about the objects and actions of the model.
It provides a set of primitive objects and actions and-if it can be called a
"programming" language--ways to combine the primitive entities to define
new, more complex objects and actions.

2.1 Data analysis as experimental programming

In order to compare programming environments, we need to consider what
data analysis is like, as a computing activity.

The cycle described in the introduction-run a program, examine the
results, and run a new or modified program based on the results-is similar
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to debugging, with some important differences. The traditional debugging
cycle is an iterative way of satisfying a detailed specification for the prop-
erties of a program. The programmer compiles and executes an imperfect
version, looks at the results, and then modifies the program to bring it
more in line with the specification. Programming environments intended
primarily for debugging or produsction programming solve the problem of
Implementation [32].

There are important differences between debugging and data analysis.
When we sit down to analyze data we are attempting to come up with a
solution to a problem that is not well understood when we begin; there is
no well-defined specification. We want to learn new things about a data
set, which implies that we have vague ideas of what to expect. "Good data
analysis is highly iterative, responding to important facts observed in the
analysis itself" [4].

A better paradigm for data analysis is experimental programming [3,11,30,321.
Environments for experimental programming emphasize solving the prob-
lem of design. In experimental programming, one starts with a vaguely
stated problem and works towards a more clearly defined problem as much
as one works towards a solution.

In production programming, one wants to change as little of the existing
code as possible and make sure that changes are made only after careful
consideration of the consequences. This style of programming is often done
by large teams (10's to 100's of progranumers) and so the environment needs
to restrict the ability of any single programmer to make arbitrary changes.

Experimental programming is usually done by very small groups (one
or two programmers), who make frequent, fundamental structural changes,
exploring novel approaches to the design. Experimental programming envi-
ronments are designed to amplify the power of the individual programmer
and minimize and defer the constraints on what kinds of changes he can
make [31].

Data analysis is also usually done in small groups, rather than large
teams. Data analysts spend some time playing with minor variations and
inspecting the details of a particular model or view of the data, but in-
termediate results often lead the analysis to branch off in completely new
directions.

6



The basic argument of this paper is: Interactive data analysis requires
experimental programming and is similar to it in spirit. Therefore, an en- ,.I
vironment designed to support experimental programming is a good base for
future data analysis systems.

2.2 Requirements

An environment that encourages experimental programming must have:
[11]

" Fast turn-around for small changes to large programs.

If we make a small change to an existing procedure or data structure,
the time we have to wait while the machine compiles, links, loads,
etc., should be as short as possible.

" Natural mental models for the computing environment.

It should be easy to understand how the existing system works and
how to modify them to get the desired effect. This depends on the
programming language(s); it will be easier to understand what's going
on if the abstractions provided by the programming language model
the way we naturally think about the problem.

" Simple, local changes to large programs are usually sufficient and

correct.

We would like to get the desired effect while making as few changes as

possible to the existing source code. This makes the change faster and
less likely to generate bugs. Whether this is possible depends on the

programming language; in many languages, for example, a change to
a data structure will require corresponding changes to all procedures
that use that data structure.

The example mentioned in the introduction requires changes to the
system that can be reasonably carried out in conventional "high-level"
languages like Pascal or Lisp. Other sorts of programming tasks,
particularly those involving real-time response, can only be done by
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programming at a lower, assembly language or microcode level. The
programming environment should support programming at all levels
and should allow free mixing of code at all levels; there should be

no barriers to communication between code fragments written in any
level.

* Tools for modifying program and data structures correctly.

In other words, the environment should provide an intelligent editor
that makes it easy to find the object we want to edit and prevents us

from introducing trivial errors.

e Tools for inspecting the environment (what to change).

We need tools that give us views of the environment, on both a large
and small scale. An editor can be thought of as providing detailed
views of procedure objects. It is also important to have tools that let

us see larger scale structure, such as a plot that shows the directed
graph of all the procedure calls in a program.

3 Conventional Operating Systems

Most graphics workstations are provided with a conventional operating

system-Unix or something similar. These operating systems were orig-

inally developed for multi-user mini-computers like PDP-11's and Vaxes;
the versions that run on workstations are inherited with little change.

Many aspects of the structure of conventional operating systems-that
make sense in a multi-user time-shared environment-are not necessary or

appropriate for a single-user machine. In particular, the harmonious shar-
ing of one machine by several users imposes restrictions on each programmer
that limit improvization.

3.1 Processes and Address Spaces

In this section, we describe a mental model of a conventional operating

system that might used by a fairly sophisticated programmer, such as the
designer and implementor of a large system like S.

8

I



To get the machine to do something, in an operating system like Unix,
the user spawns a process to carries out the desired computation. The life
cycle of a simple process can be summarized:

1. A new, empty, virtual address space is created.

The virtual address space provides a mapping between the abstract
entities of the process (procedures and data objects) and locations
in the physical memory of the computer. Most operating systems,
designed for multi-user machines, maintain the illusion of an isolated
address space for each process. This prevents one user's program from
interfering with someone else's. In other words, one programmer's
singular value decomposition of a matrix called X should not interfere
with another's FFT of an array that also happens to be called X.

Name conflicts and similar problems also arise on a multi-processing
single-user machine, but they can be managed by less drastic means-
which, as we will see below, removes a lot of overhead from simple
program and data manipulations.

2. A first, automated, initialization occurs as procedure definitions are
copied from the file system into the address space (by the loader).

Each process is the execution of a particular load module or program,
which is the result of compiling and linking one or more files holding
source code. A process's load module cannot be modified while it is
running. If a user decides to change a procedure, the current process
must be stopped, the procedure's source file edited and re-compiled,
the load module re-linked, and a new process started to execute the
modified load module.

In addition, modifications to a single file often require re-compiling
many other files. In operating systems like Unix. most programs are
written in a compile-time typed language (like C, Pascal, Fortran, etc),
which implies that all procedures that refer to a given type (data
structure definition) will need to be re-compiled if the type definition
is changed.

9m
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3. A second initialization step is controlled explicitly by the programmer;
initial contents of data objects are read in from the file system by the
user's program.

4. Internal computation proceeds by modifying the state of the data
objects in the process's address space.

5. Finally, any results of the computation that will be needed in the
future are saved by being written out to the file system.

When a process stops, its address space disappears-and so do the
procedures and data objects the address space contains. The only
objects in the environment that persist beyond the life of a process
are files. So to have any permanent effect on the user's environment,
or to communicate with another process, a process must create or
modify a file. (Unix offers a short cut for I,'O-based interprocess
communication cailled pipes which identifies the output "file" of one
process with the input "file" of another.)

This pattern of computation puts a lot of overhead on incremental
changes to either data or procedures. Interesting computation gets done
only in step 4. Nearly all the work in 3teps 1, 2, 3, and 5 is redundant, if,
for example, one is only changing a single procedure definition or a small
part of a large database, which are the most common operations in both
program development and interactive data analysis. To make efficient use
of the machine, the programmer must arrange the computation so that
the time spent in step 4 is large compared to the time spent in the other
steps; otherwise the machine will be spending an excessive number of cy-
cles on housekeeping tasks. The usual strategy in Unix is to try to break
up programs and the data they operate on into small, independent mod-
ules (the Software Tools philosophy 221), which limits at least some of the
initialization effort. Unfortunately, this isn't always possible.

An alternative strategy, used by large sub-systems like S and Macsyrma,
is to make the program complex, interactive, and adaptable enough so that
the process can remain running in step 4 indefinitely. This has disadvan-
tages that we will discuss below.

10
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3.2 Multiple languages

In the previous section, we described a possible mental model of a con-
ventional operating system. That picture is not the full story; to make
successful use of a conventional operating system, a programmer has to un-
derstand and be able to mentally switch among several different, overlap-
ping, conflicting models of his computing environment, which correspond
to the different programming languages. The major types of languages are:

e The (compiled) programming languages

Examples are C, Pascal, and Fortran. The primitive objects are data
structures of the language; primitive actions are the built-in functions
of the language. New objects can be defined by defining new data
structures; new actions can be defined by defining new procedures.

e The (interpreted) shell language

The basic objects are files (byte streams) and processes. Each process
has one input stream and one output stream. Streams are generic ob-
jects and are treated uniformly-actual streams might be files, 1/0
devices, input or output of another process (pipes). Actions are com-
piling, linking, loading, executing files; spawning and killing processes.
New actions can be defined as small programs in the shell language.

Many programming tasks require dealing with other languages (and mod-
els) like a dev ice- independent graphics language, a text-editor, a debugger,
or a statistical language (like S 4,5,61). Each language corresponds to
a model of the programming environment that is appropriate for solving
problems in a particular domain. Many of these languages (e.g. the Unix
shell) started as simple sets of commands and, over time, acquired many
features of the conventional programming languages.

Heering and Klint (,20J point out several problems with such multi-
lingual programming environments: The user is confused by the need to
understand and use simultaneously several similar, yet conflicting men-
tal models, syntaxes, programming tools, and modes of interaction. A
task that overlaps the domains of two or more languages causes concep-
tual problems, because of conflicts between mental models, and requires



tricky, time-consuming, bug-prone interfaces. Since the user should only
need to learn one set of programming tools, those tools cannot be specifi-
cally designed for any one language, but must compromise. For example,
it is difficult to provide a editor that performs automatic syntax checking
for all the programming languages.

3.3 How S fits in

To make efficient use of the machine (maximize the time spent in step 4 of
the process life cycle) S needs to run in a process that persists indefinitely-
to avoid wasted effort in starting and stopping multiple processes-and be
adaptable enough to satisfy a data analyst's need for unpredictable im-
provization. To accomplish this, S, in effect, layers its own interactive
programming environment on top of the Unix system. S is a tour-de-force
of Unix programming and does an impressive job of providing a rich and
flexible environment for data analysis. However, S has two major disad-
vantages: slow execution speed and the difficulty of adding new primitives.

The lack of speed results from (1) the lack of a compiler for the S lan-
guage and (2) the fact that S macros and data are represented by files, so
almost every operation requires 1/0 through the file system, rather than
simply referring to procedures and data resident in memory. There is no
compiler because writing a compiler is a major task and would have to
be redone for every machine that S runs on. Macros and data are repre-
sented by files because it's difficult to do dynamic allocation of memory
in languages like C and Fortran and writing a proper memory manager
and garbage collector would be comparable in complexity to writing an S
compiler. Using the Unix file system is an easy solution, if inefficient.

Some procedures cannot be written as S macros, most often because
of a need for fast execution. In that case the user will have to add a
new primitive to the S system. Introducing a new primitive is a major
undertaking; the complexity of the process (see [6J) is a good example of
the language interfacing problems mentioned in the previous section.

These problems in part result from the evolution of S over time, as its
authors learned more about what they wanted the system to do, and could

12
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be ameliorated by a redesigned, cleaned up version of S. (For example, a
new system on Common Lisp [34] would be highly portable, be automati-

cally be provided with an interpreter and compiler, the distinction between
primitives and macros would go away, and dynamic memory allocation and
garbage collection would be handled by the Lisp interpreter.)

We believe, however, that the problems could not be eliminated en-

tirely, because they are symptoms of a more basic defect. S and similar,
large sub-systems, like Macsyma, are each isolated from the rest of the op-
erating system, which leads to a tendency to re-invent the wheel, that is, to
make special purpose versions of programming tools that should be done
in uniform, coherent way for the whole programming environment, not just
for the part of the environment devoted to data analysis.

4 Integrated Programming Environments

Integrated programming environments have two features that distinguish

them from a conventional operating systems and are significant for data
analysis: all procedures and data reside in a single, persistent address space

and all programming is done in a single language.

4.1 A single address space

Experimental programming involves incremental changes to existing data

and procedures. In a conventional operating system, it is hard to make
changes of small granularity. A program must be loaded into memory and

all its data read in from the file system every time it is run-because files are

the only objects that have an indefinite lifetime. Much of the work would

be unnecessary if the procedures and data remained in memory between
invocations of the program.

An integrated programming environment does exactly that; all proce-
dures and data are located in a single address space that is shared by all

processes and that persists indefinitely. For example, if a program creates
and fills an array with numbers, then the array will still be in memory and
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available to any future programs that are run. Since memory is finite, au-
tomatic garbage collection-to reclaim space occupied by procedures and
data objects which are no longer needed-is an essential element of an
integrated programming environment.

Function calls and data references go through a symbol table. Modify-
ing a function definition is done by changing a single entry in the symbol
table. Because no linking is necessary and because unchanged procedures
do not have to be reloaded into memory, nearly all of the overhead in the
most frequent programming operations-usually involving direct changes
to one or two procedures-is eliminated. Simple, mechanical programming
tasks are accomplished in 1/10 to 1/100 of the time they take in a conven-
tional operating system, which is an overwhelming advantage for the type
of exploratory, interactive programming that goes on in data analysis.

The single address space gives the programmer a great deal of-possibly
dangerous-freedom. A programmer can usually redefine any system func-
tions; a typical exercise is to redefine the basic arithmetic operations to
handle vectors and matrices as well as numbers. This kind of freedom is
clearly impractical in a multi-user operating system and perhaps not par-
ticularly useful for large team, production-style programming. However, a
good integrated environment provides tools that help organize and manage
the contents of the persistent address space and encourage the programmer
to exercise an appropriate discipline.

4.2 A single language

One of the most striking differences between conventional operating sys-
tems and integrated environments is the fact that the same language is
used used both as the interpreted command language (the shell) and the
compiled programming language. This is possible, in part, because the per-
sistent address space provides a context for interactively evaluating isolated
expressions in the programming language. For example, executing the Unix
command: cc file.c is equivalent to evaluating the expression (compile
a-function) on a Lisp machine. The difference is that the compile is a Lisp
function like any other and a-function is a Lisp data object. compile-
and any other system command--can be called in a program in exactly the

14
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same way it is used interactively, a-f unction can be manipulated by a
user program in the same way that it is manipulated interactively. This
means that the user has a real programming language (Lisp) for system
operations, as opposed to the primitive command languages like the Unix
shell.

The basic advantages of a monolingual environment are [20]:

*The user has only one model of the programming environment to
understand.

* There are far fewer arbitrary, petty details to be remembered-like
minor differences in syntax.

e Language interfacing problems are eliminated. (This is particularly
important in a single address space system, where procedures and
data are shared by all programs. Consider, for example, the problems
that would arise in trying to refer to a Pascal record in a Fortran

subroutine.)

The fact that we want to use a single language for all programming
tasks implies several things about the kind of language that is used:

* Functions as data.

Because all programming is done in the one language, all manipula-
tion of programs-definition, compilation, loading, and execution-
must be controlled within the language itself. Thus it is necessary to
be able to treat function objects as data, to pass them to other func-
tions as arguments, and to return them as computed values. This
is true in Lisp and Smalitalk, but only true to a limited degree in
languages like C or Pascal.

SData abstraction and run-time typing.

Most statistical computing in done in a Fortran style-creating and
modifying procedures that operate on a limited set of data structures
(numbers and arrays). In more modern languages, the programmer in

15
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encouraged to devote an equal or greater amount of time to the defi-
nition and modification of new types of data structures. A language
that encourages experimentation with data structure definitions in a
persistent address space should support data abstraction and run-time
typing.

Data abstraction means that it is possible to define generic procedures
that do the "right thing" when called with varying types of argu-
ments. For example, the plus function should behave properly when
given integers, floating point numbers, complex numbers, matrices,
and even a code for missing data or a representation of infinity. Data
abstraction is a fundamental part of Smalltalk and well supported in
modern dialects of Lisp, but very difficult in Pascal. Fortran. or C.

A language that supports data abstraction can either require types
of all variables to be defined at compile-time (as in Mesa) or it can
allow procedures to determine the types of their arguments at run-
time. For experimental programming, run-time typing is essential,
otherwise modifying the definition of a data structure would require
recompiling all the procedures that might refer to it.

For example, one might like to try out several alternatives for a rep-
resentation of large sparse matrices. It should be possible to use a
library of linear algebra routines without having to modify or recom-
pile them to deal with each variation. (What would be needed is
generic array element look-up functions.)

The need for efficient run-time typing is a major reason why Lisp

and Smalltalk machines benefit from non-standard architectures. A
common technique is to encode some type information in tag bits in
each machine word. For example, a machine with 8 tag bits and 32
data bits (to allow for IEEE standard format floating point) would
have a word length of be 40 bits instead of the 32 bits words found
in microprocessors like the Motorola 68k. The instruction set would
also have to be specialized to permit quick extraction and analysis of
the tag and data fields.

* Integrated dialects.

16

' :I '



Because there are legitimately distinct types of problems, the Ian-
guage should allow the definition of dialects that provide abstractions
appropriate for a particular domain [11,20). However, if done prop-
erly, a monolingual environment will have a coherent mental model,
a consistent syntax, a properly partitioned set of programming tools,
and predictable modes of interaction for all dialects.

A principal reason for the popularity of Lisp is its ability to support
different styles of programming within a consistent framework. Many
examples of high level abstraction in Lisp are given by Abelson and
Sussman [1]. Examples of specialized languages built on top of Lisp
are Flavors. [91 an object-oriented extension of Common Lisp, and
Loops [8,351, an extension of Interlisp-D that supports object-oriented,
data-oriented, rule-based, and procedure-oriented styles. Runtime
typing, data abstraction, and treating functions as data are essential
elements in building these extensions to Lisp.

The monolingual environment has an obvious defect-existing software
written in other languages is not available. For example, statisticians ben-
efit from the extensive numerical analysis libraries (e.g. Linpack) written
in Fortran.

One solution is to choose an environment that is not strictly monolin-
gual, such as that provided on the Symbolics Lisp machines. Such systems
provide compilers for more traditional languages like Fortran. C. and Pas-
cal and an interface that allows procedures in these languages to be called
from Lisp programs. The intent is that essentially all new programs will
be written in the primary language the environment is designed for (e.g.
Lisp). Some tools may be provided for programming in the auxiliary lan-
guages, their purpose is mostly to help the programmer avoid re-inventing
the wheel. However, introducing additional languages inevitably leads to
some of the difficulties inherent in multilingual environments.

In pure monolingual environments (perhaps Smalitalk), the only alter-
native is to translate or re-code whatever is needed. We feel strongly that

* this alternative is not as bad as it seems to most statisticians at first glance.

Most statisticians underestimate the difficulty of transporting and us-
ing programs written in standard Fortran, even ones as well-documented
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and carefully written as Linpack. At the same time, they overestimate
both the difficulty of re-writing and the amount of code that needs to be
re-written. The classical numerical analysis libraries were developed in
a punchcard/batch-processing programming environment that is orders of
magnitude slower at mechanical programming tasks than the integrated
environments. Since the numerical algorithms are well understood (which
was perhaps not quite true at the time the libraries were first written),
the programming needed to re-implement them is the type that is acceler-
ated most. It is, for example, possible to write and debug a singular value
decomposition in a few hours [29].

Still, re-coding standard numerical analysis routines would be at best
uninteresting and a comprehensive recoding would require a substantial
investment of time. A more serious drawback is that recoded libraries will
not be as thoroughly tested and reliable.

5 Conclusion

The purpose of this paper has been to argue that, for research in data
analysis, especially research in data analysis systems, a workstation with
an integrated programming environment is a better choice than one with a
conventional operating system. The principal reason is that the low level
structure of an integrated environment is more hospitable to the improviza-
tional, experimental programming that is an essential part of good data
analysis. Another important point is that the languages used (Lisp and
Smalltalk) allow the data analyst to choose abstractions that more closely
fit the problems to be solved. For our own research, we have chosen Lisp
machines with support for object-oriented programming (e.g. Flavors, on
the Symbolics and Loops on the Xerox machines).

We should make it clear that we are not suggesting that any of the ex-
isting integrated programming environments are suitable for analyzing real
data. No system like S is available for these environments yet. The best
choice for doing data analysis at present is to get a workstation with a con-
ventional operating system and S (or possibly ISP [12,131). Recent versions

of S and ISP explore some of the possibilities of graphics workstations, for
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example, by including high- interaction techniques like rotating scatterplots
and scatterplot matrices.

It is difficult to predict how long it will be before a system with func-
tionality as comprehensive as S is available on a Lisp machine. Work on S
began in the mid-70's. It started to appear outside Bell Labs about 5 years
later and became fairly widespread in academic institutions after about 10
years of development. We might, on the one hand, expect development of
a similar system on a Lisp machine to take less time, because elementary
programming tasks get done much more quickly.

On the other hand, integrated environments represent a significant de-
parture from the past and it will take time to explore and understand
their novel possibilities. An early example of this exploration is the DINDE
system of Oldford and Peters [281. For the similar reasons, the Lisp envir..n-
ments themselves are the subject of active research and therefore somewhat
unstable; examples are the on-going research in object-oriented program-
mning and window systems. This inhibits the development of a stable sta-
tistical system. However, it has a positive aspect as well. The structure
of integrated environments is not frozen; if statisticians start research now,
they can influence the standards as they develop.

5.1 A poor man's integrated environment

A reasonable, intermediate research goal would be to produce an improved
version of S, with the following properties:

*One language that can be used as the shell, macro, or compiled imple-
mentation language, which will imply fast execution, simpler internal
structure, and easier addition of new functions.

e Automatic management and garbage collection of a persistent virtual
memory which will allow faster access to statistical data and func-
tions.

e Portable over many types of workstations and operating systems.



* A representation of statistical data in the data structures of the lan-
guage.

* As comprehensive functionality as S.

* Device independent static graphics.

We propose that any new system of this type should be implemented in
Common Lisp (34]. Common Lisp systems (including compiler, interpreter,
and some programming tools like an editor and debugger) are available
for a large and growing number of workstations and operating systems.
the first three requirements mentioned above come for free with Common
Lisp. The remaining three would be added by the implementor. Most
Common Lisp implementations provide mechanisms for calling routines in
other languages, so statistical functionality can be provided in the same
way it is done in S, using standard Fortran libraries. Providing device
independent static graphics is a more substantial undertaking, though some
standards exist.
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A Appendix: an example

The remainder of this paper will illustrate the comparison between con-
ventional operating systems and integrated programming environments by

-' working a concrete example.

By improvizational data analysis, we don't mean to suggest that the user
will be constantly developing profound, new approaches to data analysis-
we have in mind modest, but unpredictable innovations, something like the
following.

Suppose we have been drawing histograms using some pre-defined pro-
cedures and data structures, without bothering to understand all their de-
tails. We decide we'd like to modify the existing procedures (and data
structures, if necessary) to be able to draw logograms as well.

If a histogram is a bar chart where the heights of the bars are propor-
tional to the counts in the corresponding bins, then the logogram is a bar
chart where the heights are proportional to the log of the counts. Although
the logogram is probably a bad choice for a data analyst (a rootogramn is
usually prefered), we use it as an example because it lets us introduce a
trivial error-what happens if we take the log of zero?

A.1 A sequence of actions

To go from a histogram to logogram, we need to:

9 Find out about the current state of the system.

In other words, we need to know what data structures and procedures
are used to tabulate the histogram and draw it.

Let's suppose that drawing a histogram uses three types of data struc-
tures and two procedures: (a) a (statistical) database, (b) a structure
holding the counts for each bin of the histogram, and (c) a structure
representing the plot in which the histogram is drawn; (a) a procedure
which queries the database and tabulates the counts in the histogram
structure and (b) a procedure that draws a plot based on a historam
structure.
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Figure out what changes to make to get desired effect.

In this case, the most obvious choices would be to either (a) modify

the tabulation procedure so that the resulting histogram data struc-
ture would hold logs of the counts rather than the counts or (b) modify
the drawing procedure so that it draws bars whose heights are pro-
portional to the logs of the counts rather than the counts themselves.

Alternative (a) might, in some programming languages, require mod-
ifying the histogram data structure so that its cells can hold floating
point numbers rather than counts.

* Make the changes easily and correctly.

We need to find and edit the source code that defines the procedures

and data structures mentioned above, without introducing errors into
any existing code and without wasting time on trivial syntax errors

in our own additions.

e Translate into executable form.

Finally we need to compile, link, and load our modifications into the
existing system so that we can use the logogram on the data set that
inspired us to program it in the first place.

A.2 Logograms in Unix

For ease of presentation, we present the example as though we did data
analysis under Unix by executing shell commands from a predefined library
of statistical functions.

A more reasonable scenario would be to assume that we did interactive
analysis using a statistical language like S. For this particular example, it
would be much easier to write an S macro than to incrementally modify a C
program. However, S is not a complete answer; if high speed were needed,
say, for interactive graphics, the logogram would have to be added as a
primitive function. We recommend this to the reader as a good illustration
of the language boundary problems that arise in multilingual environments.
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Basically, the reason that it is easier to do data analysis under S is that-
for problems that can be solved with macros-S offers an approximation
to an integrated environment.

Suppose our machine has a builtin library of statistical functions that
can be called interactively from the Unix shell. To use the statistics com-
mands we need to include the directory /usr/stat/bin in our search path,
which we do by typing:

set path = (/usr/stat/bin $path).

The statistics library sends plots to a device defined by a shell environment

variable STAT.G-DEV. which we can set by:

setenv STATGDEV =/dev/gwin0.

which might mean to send the plots to graphics window zero.

To compute and draw a histogram, we type:

hist < file.data.

The execution time will, of course, depend on the size of the batch. For

small data sets (100's of points), it should take at most 10 seconds. Note,
however, that the time is spent reading the data from the file system must

be redone every time we compute a new histogram.

So far, we are using the shell language, csh. Because csh was not

originally intended as a programming language, it developed petty incon-
sistencies, like the difference in syntax between changing the search path

and setting the shell variable.

Suppose that, after looking at the first plot, we decide we would like to
try a "logogra"n instead. We will need to find out more about how the

stat library works.

We list /usr/stat and find that it has a subdirectory called src. In

/usr/stat/src, we find Makefl e, which is a specification, written in the
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STAT = /usr/stat 16%
SOURCES = $(STAT)/src
HEADER = $(STAT)/def/statlib.h
STATLIB = $(STAT)/lib/statlib.a

BIN = $(STAT)/bin

$(BIN)/hist: $(SOURCES)/hist.o $(STATLIB)
cc -o $(BIN)/hist $(SOURCES)/hist.o $(STATLIB) -im
$ (SOURCES)/hist.o: $ (HEADER)
cc -c -0 $(SOURCES)/hist.c

$(STATLIB): $(BIN)/statlib.o $(HEADER)
ar r $(STATLIB) $(BIN)/statlib.o
ranlib $(STATLIB)

Figure 1: The make file for the stat library.

make language, for compile and link dependencies among a group of files.
It is shown in figure 1.

If we decipher this, we see that the hist command is defined in
/usr/stat/src/hist. c which is shown in figure 2.

To make sense of hist.c, we mentally switch to a third language,
namely C. It's not hard to guess that Batch, Histogram, and DisplayList
are data structures used by the statistics library. The procedure GetBatch
collects the data, TabulateHistogram does the counting work, and PlotH-
istogram and DrawPlot produce the picture.

There are two alternative ways to proceed. One is to write a new pro-
cedure, TabulateLogogram, to replace TabulateHistogram. The other is
to replace PlotHistogram by a PlotLogogram. Tabulation seems simpler
than drawing plots, so we decide to look at TabulateHistogram (figure 3).
To find its source code, we type grep TabulateHistogram *.c in various
subdirectories of /usr/stat and finally find it in /usr/statlib/summar. c
(see figure 3).
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#inclde <sdiohh

#include <sati.h>

#include "/usr/stat/defs/statlib.h"

* main()

Batch the..Aata;
Histogram the..histogram;

Displaylist the-..plot;

GetBatch(&the data, stdin);

the..histogram.nbins = 0;
TabulateHistogram(kthe-data, kthe..histogram);
MakePlotHistogram(-the-.plot. &the-.histogram);
DrawPlot (&the-.plot);

Figure 2: hist.c

TabulateHistogram (batch, hist)
Batch *batch;

Histogram *hist;

int i;

InitializeHistogram(batch. hist);
for(i=0; i<batch->size; i++)

hist->cells[GetBin(hist~batch->data~i])1 + 1;

Figure 3: The definition of TabulateHistogramn
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hist->cells is an array that holds the counts. What we would like to
do is just insert a final loop that replaces hist->cells~i] by
log(hist->cells (i] ). Unfortunately, hist->cells is an array of inte-
gers. This means that we cannot put floating point numbers in it because

the compiler won't let us and, more importantly, because all the routines
that use a Histogram data structure will expect the cells to hold inte-
gers. Modifying the definition of Histogram would possibly require editing
all the procedures that use it and certainly require recompiling all of them.

The stat library is large (1,000's of lines) and we are not familiar with its

internal details, so making this change correctly would take days, if not
weeks. This is an example of the difficulties that result from lack of data

abstraction and run-time typing.

Instead, we decide to approximate log(hist->cells [ii ) by the closest

integer to 100* log (hist ->cells [iD . This means that the labeling of the
plot will be incorrect. It's also the wrong way to start out if we intend

to build further on the logogram, for example, if we wanted to add error
bars around the heights of the bars. However, the shape of the plot will be
roughly correct.

We create a file loghist.c by copying /usr/stat/src/hist.c (using
the csh language). We enter a screen editor (another language and mental

model) and add the procedure Tabulate Logogram, by copying Tabulate-
Histogram from /usr/stat/lib/smmar .c and then inserting a final loop:

hist->cells~i) = 100 * log( (float) hist->cells~iD);

When we are done, we exit the editor environment and go back to the

shell environment to compile new version by typing:

cc -o loghist -0 loghist.c /usr/stat/src/statlib.a -lm

Then we run it by typing loghist file. data.

The first time, the result is:
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Floating Point exception (core dumped)

In this example, it's not too hard to figure out what's wrong, even
without any debugging at all.

The quality of debuggers varies greatly across versions of Unix. In a
system with a poor debugger, the only reliable way to find out what is
going wrong is to liberally insert print statements to trace the execution.

Many Unix systems provide a source level debugger called dbx, which is
yet another language and mental model. To use it we need to re-compile
with a special -g flag:

cc -g -o loghist loghist.c /usr/stat/src/statlib.a -Im

We enter dbx and type run; dbx answers:

floating point exception at line S5
hist->cells~i] = 100 * log( (float) hist->cellseil);

We then type print hist->cells [i] which returns 0. The error is fixed
by replacing log(hist->cells[i]) by log(hist->cellstil + 1), after
which we edit, compile, and try again.

Note that we have used 5 overlapping languages and models of the
environment: csh, make. C. an editor, and dbx.

A.3 Logograms in Interlisp-D

Interlisp-D Interlisp-D is a Lisp-based integrated environment developed
at Xerox PARC and runs on the Xerox 1100 series of workstations. It is
the product of over ten years of development and features a residential
Lisp environment, a large collection of program analysis and debugging
tools, a simple yet powerful window system, and a substantial library of
applications software, including several graphical editors.

Interlisp-D is designed for use on a single-user graphics workstation. A
typical configuration includes a Xerox custom built, microprogrammable
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bit-sliced processor with between 1.5 and 3.5 Megabytes of main memory,

a 1024 x 780 high-resolution monochrome bitmap display, a three button
mouse pointing device, a 40 Megabyte local hard disk, a floppy-disk drive,
and a 10 Megabit ethernet connection to the outside world. A floating
point processor option is available in the form of a Weitek 1032/1033 high
performance chip set which is rated at between 1.1 and 5 Megaflops. From
Interlisp-D, in some situations, it possible to get floating point performance
superior to the DEC VAX 11/780. The Xerox 1100 series of workstations,
all of which run identical versions of Interlisp-D at differing speeds, is com-
prised of five machines ranging in price from $10,000 to $80,000, although
a development configuration usually costs between $20,000 and $40,000.

Interlisp-D is a monolingual environment based on a dialect of Lisp called
Interlisp. All aspects of the environment are coded in this language, from

high-level commands to low-level system internals, so that there is no funda-
mental distinction between applications code and what might be called the
"operating system". The programmer's model of the Interlisp-D environ-
ment is a large (32 Megabyte) persistent virtual memory space populated
by data objects and programs. All actions occur within this virtual memory
space, which is sometimes called a world-load. At startup the world-load
consists of a default collection of roughly 4 Megabytes worth of data objects
and programs which might be called the Interlisp-D kernel. The world-load
may be augmented by creating new objects or loading new objects into the
environment from secondary storage and, on occasion, the world-load is
backed up by writing some portion of it to secondary storage, but the state
of the machine is described solely by the contents of the world-load, which
evolves over time. The model is very similar to that of APL environments,
for those familiar with that language.

The Interlisp-D kernel provides standard programming tools, such as a

Lisp interpreter and compiler, a Lisp code editor, peripheral device drivers,
memory management and network access software, along with tools cus-
tomized for the Lisp workstation environment, such as a window system,
a network-wide file system, browsing and organizational facilities for the
virtual memory space, and static and dynamic Lisp program analysis tools.

Interlisp-D depends heavily on the window system to organize informa-
tion on the high-resolution display. The display is divided into rectangular
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regions called windows, each of which represents a separate activity or
context. Since the display is bitmapped, text and graphics may be freely
intermixed within each window. Windows are objects in the environment
which may overlap, may be created, destroyed, reshaped, moved, buried,
redisplayed, either manually or under program control, and may be cus-
tomnized for particular activities. A window manager controls interaction,
determining the target for graphical or keystroke input and keeping track
of which windows are displayed, where the cursor is, etc. In combination
with 'menus, which are specialized windows dedicated to command selec-
tion, the window system allows the user to interact graphically with the
environment and is a crucial aspect of the user interface to Interlisp-D. At
startup, a few default windows are displayed including a top-level Lisp lis-
tener and a message display window. As the session progresses window are
created and discarded as needed. In the midst of a session the display may
appear as in figure 4.

The window labeled Interlisp-D Executive evaluates Lisp expression
typed in at the keyboard, and is often called a Lisp-listener. At the top
of the screen is an icon, which represents a window that is still active, but
compressed and moved out of the way. The tiled window labeled Laf ite is
the electronic mail browser. Off to the right hand side are a history window,
which maintains a record of expressions typed into the Lisp-listener, and a
manager window which describes the currently loaded collections of proce-
dures and data structures. In the foreground is a plot window displaying a
histogram. The plot window overlaps two editor windows.

The example To draw a histogram the user types the Lisp expression
(HISTPLOT DATA) where DATA is a variable bound to a data object which
already exists in the environment (in this case a list of numbers). The

result of this expression a plot data object which is then available for further
computation.

As can be seen from the screen image in figure 4, the plotted data has
a large peak at zero. To produce a logogram the user needs to examine the

function definition of HISTPLOT. This is accomplished by typing the Lisp
expression (DF HISTPLOT) which causes an editor window to appear as in
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Figure 4: The workstation screen as it might appear while working the
example.
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figure 5. The Interlisp-D editor, is a menu and mouse driven Lisp structure
editor. That is, all operations are specified on the menu attached to the
right of the editor window, and the editor has full knowledge of Lisp syntax;
for example, it is impossible to produce unbalanced parentheses with this
editor.

The function HISTPLOT calls several subsidiary functions, the most in-
teresting of which are HISTO.MAKEBINS and HISTO.DRAW. To edit one of
those functions, the user could simply select (with the mouse) the function
name and button the Edit item in the editor menu, to produce another
editor window. However, instead of browsing the function definitions in
this manner, the user may prefer to generate a global view of the intercon-
nections between functions in HISTPLOT. Interlisp-D has a tool called called
Masterscope which may be used to generate such a view.

Masterscope analyses the functions currently loaded (a fairly straight
forward task in Lisp) and maintains a data base of information. Masterscope
may then be queried for objects in the environment that satisfy certain
relations. For example, the user may ask to edit all functions which call
the function HIST.MAKEBINS. Masterscope may also be asked to display
graphically the tree of function calls from a specified root function. In
this example, the user might ask Masterscope to show the call structure
from HISTPLOT. The result of this operation is a grapher window as shown
in figure 6. The nodes in the represented tree structure are active. For
example, If the cursor is pointed at one of the nodes and the left button
is depressed then an editor window pops up with the appropriate function
definition. The window is also scrollable to the right. That is, the portion
of the graph which is not currently shown and extends off to the right may
be viewed by moving the cursor to the bottom of window and buttoning
right.

It is clear from the grapher window that HISTO.DRAW's job is simply
to display the histogram, calling many graphics functions in the process,
while HISTO.MAKEBINS actually does the binning. The user might now edit
the definition of HISTO .MAKEBINS by buttoning the HISTO .MAKEBINS node
in the grapher window to produce an editor window as in figure 7.

The function definition is moderately complex; however the sorted and
binned numbers are passed back as a property of the histogram. The rel-
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Figure 7: Editor window 3howing the function definition of
HISTO .MAKEBINS.
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7.1

IJOCER- (bind INDEX for NUM in BAT1H

do (SETQ INDEX (find I from 0 as MARKin (COP MAPI'S)

suchthat (LESOP NUM MARK)))
(ASET (ADDl (AREF BINEDNUBERS INDEXJ),

ISTO, O BINEDNUMBERS INOEX)
(PLOTPROP HISTOGRAM (QUOTE BINEONUMLERS)

(for I from 0 to (SUB1 NBIN$)
collect (AREF BINEDNUMBERS I)))

(PLOTPROP HISTOGRAM (QUOTE MARKS)
MARKS)))

IST0,

Figure 8: Closeup of a critical part of HISTO.MAKEBINS.

evant lines are shown in figure 8. The histogram has a property called
BINEDNUMBERS which describes of the frequency in each bin. The property
called MARKS describes the end points for each bin.

It is sufficient to apply log's to the frequency in each bin to produce a
logogram. This change is effected by the insertion of an additional function
call, as shown in figure 9

Note that it is not necessary to convert the frequencies to floating point
numbers before applying LOG. This is an instance generic arithmetic which
is possible because LOG may query the type of its argument at run time.
Also, the result of this expression will now be a list a floating point numbers,
rather than integers, but due to generic arithmetic we can be fairly confident
that this will not disrupt the rest of the computation.

To instantiate the change the user simply exits the editor. The system
now overrides the previous definition of HISTO.MAKEBINS and the user is
immediately able to try out the new definition by typing (HISTPLOT DATA)
in the lisp-listener window.
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UI'8ER- in (COF; MARKS)
suchthat (LESSP NUM MARK)))

(ASET (AOO1 (AREF BINEONUMBERS INDEX))
BINEDNUMBERS INDEX))

(PLOTPROP HISTOGRAM (QUOTE BINErNUMBERS) .....

I S To.[ C(for I from 0 to (SUI1 NBINS)
collect (LOG (AREF BINEONUMBERS I))))

(PLOTPROP HISTOGRA-7QUOTE MARKS)
MARKS)))

Figure 9: Closeup of editor window after change to HISTO .MAKEBINS.

The function HISTPLOT evaluates until an error occurs, in this case an
attempt to take the log of zero. The computation is suspended at the point
of the error and a break window pops up detailing the type of error and in
which function it occurred, as show in figure 10. The break window is also a
lisp-listener, so Lisp expression may be evaluated in the context of the break.
For example, to examine the value of the variable HISTOGRAM, it is sufficient
to type its name in the break windiow. To the right of a break window
is a menu describing the execution stack at the time of the error. For
example, the attempted log of zero occurred below HISTO .MAKEBINS. The
HISTO .MAKEBINS entry has been selected and a representation of that stack
frame is displayed above the break window. The local variables used in that
stack frame are displayed with their names and values. For convenience, the
values of variables may be inspected or set from the stack frame window.
The function definition associated with the stack frame may be edited by
selecting its name in the stack frame window, as has been done in the
illustration.

The error clearly occurred in the function HISTO.MAKEBINS, and the
user might now edit that function from the break window, by selecting
its name from the execution stack menu. Since some bins will have zero
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9iCOMPILE (QlUOTE HIS TPLOT))

L InW-
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Figure 10: Closeup break window generated from evaluation of logogram
function.
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A U I A UU1 I A Rut5 In~LriUMT L~ INULY;)
1. BINEONUMBERS INDEX))

(PLOTPROP HISTOGRAM (QUOTE BINEONUIIBERS)
(for I from 0 to (SUBI NBIN.,.

collect (LOG (PLUS 1 ,AF.EF BINEDNUMBERS I)))))
Hi (PLOTPROP HISTOGRAM (Q.UOTE MARS.:'

MARKS )) )...:..:.,

Figure 11: Closeup of change to definition of HISTO .MAKEBINS.

counts, the user decides to add one to the frequencies for each bin. This
may be effected by inserting an expression before evaluating LOG, as show
in figure 11.

Since the context of the error is captured in the break window, the
computation may now be restarted from the error. Alternatively, the user
may abort the computation and start again from the top. In either case
the computation proceeds without error to produce the logogram as shown
in figure 12
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